Merging Organometallic Chemistry with Polyoxometalate Chemistry

Richard Villanneau, Renaud Delmont, Anna Proust, and Pierre Gouzerh*[a]

Dedicated to Professor Achim Müller on the occasion of his 60th birthday

Abstract: A series of polyoxomolybdate-incorporated organometallic complexes has been obtained by reaction of $[MBr(CO)_5]$ or solvated $\{M(CO)_3\}^+$ ions (M = Mn or Br) with $(nBu_4N)_2[Mo_2O_7]$ in methanol, sometimes in the presence of triols of the type $RC(CH_2OH)_3$ (R =Me or CH_2OH). Their molecular structures are related to those of previously described polyoxoalkoxomolybdates through the formal replacement of *fac*- $\{MoO_2(OR)\}^+ \text{ units by topologically equivalent } fac-\{M(CO)_3\}^+ \text{ units. Representative pairs of structurally related clusters include [Mo_2O_6(OMe)_4- {Re(CO)_3}_2]^{2-} \text{ and } [Mo_4O_{10}(OMe)_6]^{2-}, [Mo_2O_4 {MeC(CH_2O)_3}_2 {Mn(CO)_3}]^-$

Keywords: manganese • molybdenum • organometallic oxides • polyoxometalates • rhenium and $[Mo_3O_6(OMe)\{MeC(CH_2O)_3\}_2]^-$, $[Mo_2O_4\{HOCH_2C(CH_2O)_3\}_2\{Mn(CO)_3\}_2]$ and $[Mo_4O_8(OEt)_2\{MeC(CH_2O)_3\}_2]$, $[Mo_6O_{16}(OMe)_2\{MeC(CH_2O)_3\}_2^ \{Mn(CO)_3\}_2]^{2-}$ and $[Mo_8O_{20}(OMe)_4^ \{MeC(CH_2O)_3\}_2]^{2-}$. Although the frameworks of the majority of derivatives are based on tetranuclear units which display the common rhomb-like structure, the alternative cubane-type arrangement is observed in $[Mo_2O_5(OMe)_5\{M(CO)_3\}_2]^-$.

Introduction

Organometallic derivatives of polyoxometalates now form a full class of compounds.^[1] Klemperer,^[2a], Knoth,^[3] and Finke^[4a] have pioneered this field which has expanded steadily since then, mainly due to contributions from the groups of Klemperer^[2] and Finke,^[4] and also those of Isobe^[5] and Siedle.^[6] The conceptual difference between organometallic compounds supported on and incorporated into a polyoxometalate has been emphasized by Finke.^[4a] A third group of compounds is composed of the organometallic cation salts of polyoxometalates.^[5d, 6, 7] Polyoxometalate-supported organometallic complexes provide discrete analogues of solid-oxide-supported organometallic complexes.^[2, 4] In a general way, organometallic derivatives of polyoxometalates are of interest as potential polyoxometalate-based catalysts or precatalysts. Representative examples include the synthesis of C_{n+1} carboxylic acids from C_n olefins by sequential one-pot hydroxylation and oxidation steps using [(Ph₃P)₂Rh(CO)]₄-[SiW₁₂O₄₀] as a bifunctional catalyst,^[6a] oxidation and reduction catalytic reactions of cyclohexene with [(1,5-cod)- $IrP_2W_{15}Nb_3O_{62}]^{8-}$ (cod = 1,5-cyclooctadiene),^[8] and selective oxidation of propene to acetone with vanadate-supported

rhodium catalysts.^[9] Although polyoxometalate-based organometallic compounds are merely a class of organometallic oxides,^[10] they have been generally reviewed separately due to their rather specific structures. However as new structural types are being discovered, the distinction between classical organometallic oxides and polyoxometalatebased organometallic compounds is expected to vanish progressively.

Our entrance in this field stemmed from the study of the reactions of $[Mo_5O_{13}(OMe)_4(NO)]^{3-[11]}$ with $[{Cp*RhCl(\mu Cl)_{2}$ (Cp* = η^{5} -C₅Me₅) and [MBr(CO)₅] (M = Mn or Re). The structurally related complexes [Mo₅O₁₃(OMe)₄(NO)- ${Cp*Rh(H_2O)}]^{-[12]}$ and $[Mo_5O_{13}(OMe)_4(NO)\{M(CO)_3 (H_2O)$]^{2-[13]} have been isolated and characterized as tetrabutylammonium salts. In addition, it was found that [Mo₅O₁₃(OMe)₄(NO)]³⁻ eventually dissociates into smaller fragments that subsequently combine with organometallic fragments to give novel aggregates. These observations led us to investigate the reactivity of $[MBr(CO)_5]$ with simple polyoxomolybdates such as (nBu₄N)₂[Mo₂O₇]. As trisalkoxo ligands of the type $\{RC(CH_2O)_3\}^{3-}$ are known to stabilize trinuclear complexes that may further aggregate to form higher nuclearity clusters,^[14, 15] some reactions were carried out in the presence of variable amounts of RC(CH₂OH)₃. In this way we have obtained a number of clusters with different nuclearities. Their molecular structures have been determined by single-crystal X-ray diffraction and compared to those of their parent polyoxo(alkoxo)molybdates. Structural relationships reveal some electronic connections between low-valent and high-valent complex fragments.

[[]a] Prof. P. Gouzerh, Dr. R. Villanneau, Dr. R. Delmont, Dr. A. Proust Laboratoire de Chimie Inorganique et Matériaux Moléculaires, Unité CNRS 7071 Université Pierre et Marie Curie, Case Courrier 42 4 Place Jussieu, 75252 Paris Cedex 05 (France) Fax: (+33) 1 44 27 38 41 E-mail: pg@ccr.jussieu.fr

Results and Discussion

Syntheses: Discrete integrated organometallic oxides, that is compounds where the organometallic component is incorporated in the polyoxometal framework, have been obtained in several ways, including the incorporation of an organometallic moiety into a lacunary polyoxometalate,^[2a] the oxidation of carbonyl dimers [{Cp*M(CO)₂}] ($M = W^{[16a]}$ or Mo^[16b]) and various aggregation processes triggered by protons and/or Lewis acids in aqueous or non-aqueous media.^[2, 5, 17] The latter strategy has been used throughout this work.

Under nitrogen and in the dark, the reaction of $(nBu_4N)_2$ - $[Mo_2O_7]$ with an equimolar amount of $[MnBr(CO)_5]$ in MeOH yields a crystalline product mostly composed of green cubic crystals of **1a** with a minor amount of red octahedral crystals of **2**. When the reaction is carried out in non-deoxygenated MeOH, **3** is obtained together with **1a**. $[Re(CO)_3(MeCN)_3](BF_4)$ also reacts with $(nBu_4N)_2[Mo_2O_7]$ in MeOH to give several compounds, of which **1b** and **4** have been isolated.

 $(nBu_4N)[Mo_2O_5(OMe)_5\{M(CO)_3\}_2]$ **1a**: M = Mn, **1b**: M = Re

 $[Mo_2O_4(OMe)_6[Mn(CO)_3]_2]$ 2

 $(nBu_4N)_4[Mn(H_2O)_2\{Mo_5O_{16}(OMe)_2Mn(CO)_3\}_2]$ 3

 $(nBu_4N)_2[Mo_2O_6(OMe)_4[Re(CO)_3]_2]$ 4

Reaction of $(nBu_4N)_2[Mo_2O_7]$ with $[MnBr(CO)_5]$ in MeOH has been further investigated in the presence of $RC(CH_2OH)_3$ $(R = Me, CH_2OH)$. The compounds **5**, **6a**, **b**, and **7** have been obtained in this way.

```
(nBu_4N)[Mo_2O_4[MeC(CH_2O)_3]_2[Mn(CO)_3]] \qquad 5
```

 $[Mo_2O_4[RC(CH_2O)_3]_2[Mn(CO)_3]_2]$ **6a**: R = Me; **6b**: $R = CH_2OH$

```
(nBu_4N)_2[Mo_6O_{16}(OMe)_2[MeC(CH_2O)_3]_2[Mn(CO)_3]_2] 7
```

This paper deals with compounds 1, 2, 4, 5, 6, and 7. The anion of 3 contains two $\{Mo_5O_{16}(OMe)_2\}^{4-}$ moieties structurally related to $\{Mo_5O_{13}(OMe)_4(NO)\}^{3-}$,^[12] each bound to a $\{Mn(CO)_3\}^+$ unit by three contiguous donor groups (the two methoxo groups and one equatorial bridging oxo ligand) and to a Mn^{2+} center by two axial terminal oxygen atoms. An improved synthesis and the detailed structure of 3 will be reported elsewhere.

Oxomethoxo clusters: Compounds **1a** and **1b** are isostructural. The clusters $[Mo_2O_5(OMe)_5\{M(CO)_3\}_2]^-$ display a tetrahedral arrangement of the metal atoms (Figure 1). They formally derive from the clusters $[\{M(CO)_3(\mu-OH)\}_4]$ (M = Mn,^[18a] Re^[18b]) by substitution of two $\{MoO_2(OMe)\}^+$ units for $\{Mn(CO)_3\}^+$ units, one μ_3 -oxo ligand for one μ_3 -hydroxo ligand, and μ_3 -methoxo ligands for the three remaining μ_3 -hydroxo ligands. The environments of the two molybdenum atoms in **1** are similar and consist of three oxo ligands—two terminal and one triply bridging—and three methoxo

Figure 1. Structure of the anion of 1a.^[44c] Thermal ellipsoids are shown at the 12 % probability level.

ligands-one terminal and two triply bridging. Accordingly, the Mo-O distances lie into four distinct ranges, 1.66 to 1.73 Å for Mo=O_t, 1.97 to 2.01 Å for Mo-(μ_3 -O), 1.87 to 1.91 Å for Mo–OMe, and 2.26 to 2.38 Å for Mo–(μ_3 -OMe) (Table 1). Given that the Mo– $(\mu_3$ -O) and Mo–OMe distances are not very different, the molybdenum atoms practically display the typical two short/two intermediate/two long Mo-O bond pattern usually observed in polyoxomolybdates.^[19] On the other hand, the environments of the two heterometal centers (M = Mn or Re) are different, although each of them displays MO₃C₃ coordination: one is ligated to three carbonyl ligands and three triply bridging methoxo ligands, while the other is ligated to three carbonyl ligands, two triply bridging methoxo ligands, and one triply bridging oxo ligand. This difference does not translate into significant variations within M-C or M-O distances. However, as expected, the M-C distances are longer in **1b** (av Re–C 1.87 Å) than in **1a** (av Mn–C 1.79 Å). In the crystal, the anions $[Mo_2O_5(OMe)_5[M(CO)_3]_2]^-$ possess an approximate symmetry plane which passes through the M centers, the triply bridging oxo ligand, and one triply bridging methoxo ligand. The ¹H and ¹³C NMR spectrum of **1a** in CD_3COCD_3 shows that the C_s symmetry of the anion is retained in solution. At least these data indicate that only one form of 1a is present in CD₃COCD₃. However it is noteworthy that the methoxo signals could not be observed in CD_3OD , which could be indicative of exchange between the complex and the solvent.

Unlike **1**, and despite the close connection between the compositions of these clusters, **2** and the anion of **4** adopt the rhomb-like structure based on four edge-sharing octahedra common to many tetramolybdates.^[20] The cluster $[Mo_2O_6(OMe)_4[Re(CO)_3]_2]^{2-}$ (anion of **4**, Figure 2) formally derives from $[Mo_4O_{10}(OMe)_6]^{2-}$ (anion of **8**) ^[19] by substitution of *fac*-{Re(CO)₃}⁺ units for two *fac*-{MoO₂(OR)}⁺ units.

 $(PPh_{3}Me)_{2}[Mo_{4}O_{10}(OMe)_{6}]$ 8

The anions $[Mo_2O_6(OMe)_4[Re(CO)_3]_2]^{2-}$ in **4** (Figure 2) are located at crystallographic inversion centers. The unique

- 1185

Table 1. Selected bond lengths [Å] in 1a, 1b, 2, 4, 5, 6b, and 7.

1a							
Mo1-O11	1.692(3)	Mo1-O12	1.691(3)	Mo1-O13	1.903(3)	Mo1-O123	2.285(3)
Mo1-O124	1.978(3)	Mo1-O134	2.285(3)	Mo2-O21	1.681(4)	Mo2-O22	1.694(3)
Mo2-O23	1.908(3)	Mo2-O123	2.257(3)	Mo2-O124	1.969(3)	Mo2-O234	2.329(3)
Mn3-C31	1.793(5)	Mn3-C32	1.777(5)	Mn3-C33	1.802(6)	Mn3-0123	2.049(3)
Mn3-0134 Mn4-C43	2.054(3)	Mn3-0234 Mn4-0124	2.042(3)	Mn4-C41 Mn4-O124	1./81(6) 2.044(3)	Mn4-C42 Mn4-O234	1./8/(6)
013-013	1.790(0) 1.376(7)	MII4 = 0.124 023 = 0.023	2.047(3) 1 381(7)	$C_{31} = O_{134}$	2.044(3) 1 145(6)	$C_{32} = C_{32}$	2.037(3) 1 155(6)
$C_{33} = O_{33}$	1.370(7) 1.144(6)	$C_{23} C_{23} $	1.551(7)	$C_{42} = 0.42$	1.143(0) 1 162(7)	$C_{32} = 0_{32}$	1.133(0) 1.149(6)
0123-C123	1.453(5)	0134-C134	1.441(5)	O234-C234	1.427(6)	045	1.149(0)
1h			(-)				
Mo1-011	1.68(2)	Mo1-012	1.69(2)	Mo1-013	1.87(1)	Mo1-0123	2.29(1)
Mo1-O124	2.01(1)	Mo1-012 Mo1-0134	2.38(1)	Mo2-O21	1.73(2)	Mo2-O22	1.66(2)
Mo2-O23	1.89(2)	Mo2-O123	2.34(1)	Mo2-O124	2.00(1)	Mo2-O234	2.32(1)
Re3-C31	1.84(3)	Re3-C32	1.86(3)	Re3-C33	1.91(2)	Re3-0123	2.16(1)
Re3-0134	2.17(1)	Re3-O234	2.17(1)	Re4-C41	1.91(3)	Re4-C42	1.81(3)
Re4-C43	1.91(3)	Re4-0124	2.10(1)	Re4-0134	2.16(1)	Re4-0234	2.15(1)
O13-C13	1.43(3)	O23–C23	1.41(3)	O31–C31	1.20(3)	O32–C32	1.17(3)
O33-C33	1.16(3)	O41-C41	1.15(3)	O42-C42	1.21(3)	O43–C43	1.15(3)
0123-C123	1.49(2)	O134–C134	1.48(2)	O234–C234	1.52(3)		
2	/ ->						
Mo1-O112	2.252(5)	Mo1-O112'	2.260(5)	Mo1-O120	1.990(5)	Mo1-O12	1.972(5)
Mo1-0111	1.693(5)	Mo1-011	1.690(5)	Mn2-0112	2.069(5)	Mn2-0120	2.043(5)
Mn2 = O12 O112 = C112	2.040(5) 1 477(0)	Mn2 - C23 O120 - C120	1.81(1) 1.444(0)	$Mn_2 - C_{22}$ $O_{12} - C_{12}$	1.70(1) 1.45(1)	$Mn_2 = C_{21}$	1.79(1) 1.16(1)
0112 0112 $023-023$	1.477(9) 1.13(1)	0120 $C120021-C21$	1.444(9)	012 C12	1.45(1)	022 C22	1.10(1)
4	1.15(1)	021 021	1.14(1)				
4 Re1-012	2 154(8)	Re1-021	2 101(9)	Re1-0104	2 110(0)	Be1-C101	1.88(2)
Re1-C102	1.88(2)	Re1-C103	1.81(2)	Mo2-01	1.705(9)	$M_0^2 = O^2$	1.00(2) 1 704(9)
Mo2-012	2.247(8)	Mo2-012'	2.392(8)	Mo2'-O21	1.810(8)	Mo2-0104	2.087(8)
O12-C120	1.47(1)	O101-C101	1.17(2)	O102-C102	1.17(2)	O103-C103	1.19(2)
O104-C104	1.44(2)						~ /
5							
Mo1-O123	2.27(1)	Mo1-O12	2.19(1)	Mo1-O31	2.11(1)	Mo1-O13	1.91(1)
Mo1-O10	1.68(1)	Mo1-O11	1.69(1)	Mo2-O123	2.25(1)	Mo2-O12	2.15(1)
Mo2-O23	2.06(1)	Mo2-O22	1.88(1)	Mo2-O20	1.69(1)	Mo2-O21	1.71(2)
Mn3-O123	2.03(1)	Mn3-O23	2.05(1)	Mn3-O31	2.03(1)	Mn3-C61	1.77(2)
Mn3-C60	1.79(2)	Mn3-C62	1.84(2)	O123–C1	1.44(2)	O12-C2	1.44(2)
023-C3	1.45(2)	031-C4	1.37(2)	022-C5	1.41(2)	O13-C6	1.39(2)
$C_{2}^{-}C_{0}$	1.18(2) 1.52(3)	$C_{00} = C_{00}$	1.12(2) 1.56(2)	$C_{62} = C_{62}$	1.14(2) 1.50(3)	CI = C10 C5 = C10	1.5/(3) 1.58(3)
$C_2 = C_9$	1.52(5) 1.53(3)	$C_{3} = C_{9}$	1.50(5)	$C_{4} = C_{9}$	1.59(5)	05-010	1.56(5)
C0 C10	1.55(5)	C/ C10	1.57(5)	68 69	1.56(5)		
00 Mo1-011	1 067(7)	Mo1-012/	1.072(7)	Mo1-015	2 260(6)	Mo1-015/	2 247(6)
Mo1-011 Mo1-041	1.907(7) 1.680(7)	Mo1-012 Mo1-042	1.972(7) 1.669(7)	Mn1-013	2.200(0)	Mn1-O12	2.247(0) 2.055(7)
Mn1-015	2.073(6)	Mn1–C1	1.83(1)	Mn1–C2	1.78(1)	Mn1–C3	1.79(1)
01–C1	1.11(1)	O2-C2	1.15(1)	O3–C3	1.16(1)	O11-C11	1.45(1)
O12-C12	1.46(1)	O15-C13'	1.45(1)	C10-C11	1.52(1)	C10-C12	1.54(1)
C10-C13	1.56(1)	C10-C14	1.50(1)	C14-O141	1.39(2)	C14-O142	1.20(3)
7							
Mo1-O10	1.799(6)	Mo1-O11	1.684(6)	Mo1-O12	1.766(5)	Mo1-014	2.039(5)
Mo1-O123	2.305(6)	Mo1-O134	2.201(6)	Mo2-O10'	1.996(6)	Mo2-O12	2.215(6)
Mo2-O21	1.701(6)	Mo2-O22	1.706(6)	Mo2-O23	1.930(6)	Mo2-O123	2.298(5)
Mo3-O23	1.902(6)	Mo3-O31	1.699(7)	Mo3-O32	1.699(7)	Mo3-O34	2.014(6)
Mo3-O123	2.269(5)	Mo3-O134	2.301(6)	Mn1–O14	2.017(5)	Mn1–O34	2.042(7)
Mn1-0134	2.049(6)	Mn1-C41	1.80(1)	Mn1-C42	1.80(1)	Mn1-C43	1.80(1)
014-05	1.43(1) 1 14(1)	034-04	1.43(1) 1.45(1)	041-041 0124-0124	1.12(1) 1.45(1)	042 - 042 C1 - C2	1.14(1)
$C_{2}-C_{3}$	1.14(1) 1.53(1)	$C_{3} = C_{4}$	1.45(1)	C3-C5	1.43(1) 1.52(1)	U-U	1.30(1)
C2 C3	1.33(1)	0.04	1	0.0	1.52(1)		

molybdenum atom displays the typical two short/two intermediate/two long Mo–O bond pattern. The structural parameters of the {Re(CO)₃}⁺ unit in **4** are similar to those for **1b**. A noteworthy feature of **4**, also observed in **8**, is the marked dissymmetry in the Mo₂(μ_3 -OMe) bridges. The centrosymmetrical complex **2** (Figure 3) only differs from $[Mo_2O_6(OMe)_4[Re(CO)_3]_2]^{2-}$ in the substitution of Mn for Re and that of methoxo ligands for two doubly bridging oxo ligands. Again the molybdenum atom displays the typical two short/two intermediate/two long Mo-O bond pattern. However, the Mo_2(μ_3 -OMe) bridges are nearly symmetrical in **2**. The structural parameters of the $\{Mn(CO)_3\}^+$ unit in **2** are

1186 —

Figure 2. Structure of the anion of $4^{[44c]}$ Thermal ellipsoids are shown at the 12 % probability level.

Figure 3. Structure of $2.^{[44c]}$ Thermal ellipsoids are shown at the 12% probability level.

similar to those for **1a**. Given the compositions of **2** and **4**, the formation of $[Mo_2O_4(OMe)_6[Re(CO)_3]_2]$ and $[Mo_2O_6(OMe)_4[Mn(CO)_3]_2]^{2-}$ might be anticipated although these complexes have not be isolated so far.

Oxotrisalkoxo clusters: The discrete trinuclear anion $[Mo_2O_4\{MeC(CH_2O)_3\}_2\{Mn(CO)_3\}]^-$ in **5** is shown in Figure 4. Its formation provides a further illustration of the efficacy of trisalkoxo ligands in stabilizing trinuclear clusters.^[14, 15] The structure of this cluster is related to that of $[Mo_3O_6(OMe)\{MeC(CH_2O)_3\}_2]^-$ (anion of **9**)^[14] through the substitution of a *fac*- $\{Mn(CO)_3\}^+$ unit for a *fac*- $\{MoO_2(OMe)\}^+$ unit. Alternatively, this species can be viewed as deriving from $[Mo_2O_4\{MeC(CH_2O)_3\}_2]^{2-}$ (anion of **10**)^[14b] by grafting a $\{Mn(CO)_3\}^+$ unit. The Mo–O distances in **5** get

9

 $(nBu_4N)[Mo_3O_6(OMe)\{MeC(CH_2O)_3\}_2]$

$$(nBu_4N)_2[Mo_2O_4[MeC(CH_2O)_3]_2]$$
 10

into four ranges, 1.68 to 1.71 Å for terminal oxo ligands, 1.88 to 1.91 Å for terminal alkoxo groups, 2.06 to 2.19 Å for doubly bridging alkoxo groups, and 2.25 to 2.27 Å for triply bridging alkoxo groups. The equivalency of the trisalkoxo ligands in the dinuclear precursor, where they display the μ - κ ¹O: κ ¹O: κ ²O coordination mode is lost in [Mo₂O₄{MeC(CH₂O)₃]₂-{Mn(CO)₃]⁻ where one ligand displays the μ - κ ¹O: κ ²O: κ ²O coordination mode while the second displays the μ - κ ¹O: κ ³O mode. The equivalency is restored on coordination of a

Figure 4. Structure of the anion of **5**.^[44c] Thermal ellipsoids are shown at the 12 % probability level.

second $\{Mn(CO)_3\}^+$ unit, which leads to **6a**. The inequivalence of the trisalkoxo ligands in **5** is clearly apparent in the ¹H and ¹³C NMR spectrum of **5** in CD₃CN. NMR data indicate C_s symmetry for the anion as far as the trisalkoxo ligands are concerned. However the carbonyl ligands appear equivalent, which could be indicative of some fluxionality.

Both clusters **6a** and **6b** have been prepared, but only **6b** is sufficiently soluble for recrystallization and characterization in solution. Crystals with the composition **6b** \cdot 2 THF were obtained from THF and were analyzed by X-ray diffraction. The clusters are located at crystallographic inversion centers (Figure 5). Their structure is similar to that of **11**^[21] and other

Figure 5. Structure of $\mathbf{6b}^{[44c]}$ Thermal ellipsoids are shown at the 20% probability level.

- 1187

tetranuclear oxotrisalkoxo complexes of molybdenum and vanadium, all of which display a rhomb-like structure. In **6b**, as in **11**,^[21] $[V_4O_4(OMe)_6[MeC(CH_2O)_3]_2]$,^[22] and

 $[Mo_4O_8(OEt)_2\{MeC(CH_2O)_3\}_2]$ 11

 $[V_2Mo_2O_8(OMe)_2\{HOCH_2C(CH_2O)_3\}_2]^{2-},^{[23]}$ the trisalkoxo ligands cap opposite tetrahedral cavities of the oxometal framework and thus display the μ_4 - κ^2 : κ^2 : κ^3 coordination mode. This is the usual situation although the ligand may also cap a metal octahedron, for example in $[M_4O_{10}\{MeC(CH_2O)_3\}_2]^{2-}$ (M = Mo or W).^[24] The ¹H NMR spectrum of **6b** in CD₃COCD₃ is consistent with the C_s symmetry of the solid-state molecular structure.

In 7, the anions $[Mo_6O_{16}(OMe)_2[MeC(CH_2O)_3]_2$ - ${Mn(CO)_3}_2$ ²⁻ (Figure 6) are located at crystallographic inversion centers. The two equivalent halves of the anions are connected by two nearly linear Mo-O-Mo bridges with an angle of 162.5(10)°. The full anion is related to [Mo₈O₂₀(OMe)₄{MeC(CH₂O)₃}₂]²⁻ (anion of **12**)^[25] through the formal replacement of the $fac-\{MoO_2(OMe)\}^+$ units by $fac{Mn(CO)_3}^+$ units. Both the anions of 7 and 12 are formally related to the hypothetical cluster [Mo₈O₃₀]¹²⁻ which can be derived from the β -[Mo₈O₂₆]⁴⁻ ion by shearing of the Mo₄ subunits parallel to one another.^[1, 19] The anion of **7** may also be viewed as the product of the condensation of two rhombic anions $[Mo_3O_9(OMe)]{MeC(CH_2O)_3}{Mn(CO)_3}^{3-}$ by the sharing of two corners. The discrete tetranuclear subunit is not expected to be fairly stable because the environment of Mo2 does not fulfill the Lipscomb restriction.^[26] Dimerization prevents violation of this rule. However the Mo1-O10-Mo2' bridge and especially the Mo1-O12-Mo2 bridge are clearly dissymmetrical so that the geometrical parameters of the Mo1-O10-O11-O12 unit (Mo1-O10 1.81(1), Mo1-O11 1.70(2), Mo1-O12 1.73(1) Å) are reminiscent of those of a unit containing three terminal oxo ligands. A similar feature is noticeable in 12.^[25] The structural parameters for the $\{Mn(CO)_3\}^+$ unit are similar to those for **1a**, **2**, **5**, and **6b**.

 $(nBu_4N)_2[Mo_8O_{20}(OMe)_4[MeC(CH_2O)_3]_2]$ 12

Molecular topology: Clusters **1**, **2**, **4**, **5**, **6**, and **7** are properly viewed as integrated complexes. However clusters **5** and **6** can alternatively be viewed as adducts based on the dinuclear complexes $[Mo_2O_4[RC(CH_2O)_3]_2]^{2-}$ which have been reported for $R = NO_2$.^[14a] Thus, clusters **5** and **6** may be considered as integrated complexes as well as polyoxomolybdate-supported organometallic complexes.

Clusters 1 provide the first examples of discrete monocubane-type polyoxometalate derivatives. The cubane-type geometry is the alternative to the rhombic geometry for compact complexes based on four edge-sharing octahedra.[20c] The cubane-type core is relatively rare in polyoxometalate structural chemistry although it is quite common for cyclopentadienyl oxide clusters of Groups 5 and 6.^[10] Cubane-type ${\rm Mo}_4(\mu_3-{\rm O})_4$ ⁿ⁺ cores may also be found in multiple cubanetype organometallic oxide clusters,^[5] and in extended solids.^[27] Additionally, the hydrated lithium tungstate 7Li₂WO₄·4H₂O is presumed to contain tetrahedral [LiW₄O₁₆]⁷⁻ ions^[28] and a polyoxoanion-supported organometallic compound composed of a cubane-type $[W_4O_{16}]^{8-}$ unit capped by six {Ir(1,5cod)}⁺ groups has been reported.^[4c] Neither the discrete tetrahedral species $[Mo_4O_{12}(\mu_3-O)_4]^{8-}$ nor the rhomb-like species $[Mo_4O_{10}(\mu\text{-}O)_4(\mu_3\text{-}O)_2]^{8-}$ are known, presumably in part because of the high charge density in these species, and also because the environments of the four molydenum atoms in the former, and those of two molybdenum atoms in the latter, would violate the Lipscomb rule. Derivatization by the replacement of a terminal oxo ligand by an alkoxo ligand or by replacement of a fac-{MoO₃} group by an equivalent group, for example fac-{M(CO)₃}+, prevents violation of the Lipscomb rule and could lead to the stabilization of both the cubane and the rhombic structures. The stabilization of the

Figure 6. Structure of the anion of 7.^[44c] Thermal ellipsoids are shown at the 20% probability level.

clusters 1, 2, 4–7 can be explained in this way. However, it is not yet clear why 1a was obtained in higher yields than 2, while the rhomb-like compound 4 was obtained much more easily than the cubane-type cluster 1b. Structural effects due to chelating ligands also need to be considered. For instance, the incorporation of trisalkoxo ligands probably favours the rhomb-like arrangement over the tetrahedral one in view of the tendency of these ligands to cap tetrahedral cavities in the polyoxometalate framework. Further work is needed to consider the question of structural preferences from all angles.

Electronic connections: As already pointed out, the molecular structures of clusters 2, 5, 6, and 7 are related to those of $[Mo_4O_{10}(OMe)_6]^{2-}$, $[Mo_3O_6(OMe)\{MeC(CH_2O)_3\}_2]^{-}$, $[Mo_4O_8(OEt)_2[MeC(CH_2O)_3]_2],$ and $[Mo_8O_{20}(OMe)_4 {\rm [MeC(CH_2O)_3]_2]^{2-}}$, respectively, through the formal substitution of fac-{Mn(CO)₃}+ units for fac-{MoO₂(OR)}+ units (R = Me or Et). Further pairs of structurally related clusters can be found in the literature. For example, the framework of the cluster $[Mo_6O_{20}(OMe)_2(RhCp^*)_2]^{2-}$, obtained by the reaction of $(nBu_4N)_2[Mo_2O_7]$ with $[{Cp*RhCl(\mu-Cl)}_2]$ in MeOH has been connected with that of the γ -[Mo₈O₂₆]⁴⁻ ion.^[5] However comparison with the $[Mo_8O_{24}(OMe)_4]^{4-}$ $\bar{ion}^{[29]}$ is also appropriate, so that [Mo₆O₂₀(OMe)₂(RhCp*)₂]²⁻ can be formally derived from $[Mo_8O_{24}(OMe)_4]^{4-}$ by substitution of $\{RhCp^*\}^{2+}$ units for two fac-{MoO₂(OMe)}⁺ units. Similarly, the species [Mo₃O₈(OMe)₅(RhCp*)]⁻, a key intermediate in the formation of [Mo₆O₂₀(OMe)₂(RhCp*)₂]^{2-,[30]} can be derived from $[Mo_4O_{10}(OMe)_6]^{2-}$ by replacement of one fac- $\{MoO_2(OMe)\}^+$ unit by one {RhCp*}²⁺ unit. As another example, the similarity between the polyoxometalate-supported species $[{(OC)_3Mn}{Mo_5O_{18}(TiCp)}]^{2-}$ and $[{(MoO_2Cl)}{Mo_5O_{18}(TiCp)}]^{2-}$ $(Cp = \eta^5 - C_5 H_5)$ shows some connection between the fragments $\{Mn(CO)_3\}^+$ and fac- $\{MoO_2Cl\}^+$.^[31] A further example is provided by the cluster $[Mo_2O_6(OMe)_4[Ru(\eta^6-(p-cymene)_2)]$ which can be formally derived from $[Mo_4O_{10}(OMe)_6]^{2-}$ by replacement of two fac-{MoO₂(OR')}⁺ units by {Ru(η^{6} -(p-cymene)]²⁺ units.^[32a] Altogether these examples are indicative of an analogy between the fragments d^0 -fac-{MoO₂X} (X = O, OR, Cl) and d^6 -fac-{ML₃} (M = Mn, Re, Ru, Rh), where the charge have been omitted for convenience. It is worth to point out that it has been shown that ${Re(CO)_3}$ and $\{\text{ReO}_3\}$ are isolobal.^[33] Thus $\{\text{Re}(\text{CO})_3\}^+$ and $\{\text{WO}_3\}$ should also be isolobal. Electronic connections are not restricted to conical d⁰ and d⁶ fragments. For instance, there are several pairs of structurally related clusters where $\{MoO\}^{4+}$ units are replaced by $\{Mo(NO)\}^{3+}$ units, e.g. $[Mo_6O_{19}]^{2-,[34]}$ and $[Mo_6O_{18}(NO)]^{3-,[35]}$ $[Mo_{36}O_{112}(H_2O)_{16}]^{8-,[36]}$ and $[Mo_{36}O_{108} (NO)_4(H_2O)_{16}]^{12-,[37]}$ $[Mo_{154}O_{462}(H_2O)_{70}H_x]^{y-,[38]}$ and [Mo₁₅₄O₄₂₀(NO)₁₄(OH)₂₈(H₂O)₇₀]^{(25±5)-.[39]} The isolobal analogy between the fragments d^{0} -{MoO}⁴⁺ and d^{4} -{Mo(NO)}³⁺ clearly emerge from the qualitative molecular orbital schemes of these fragments.^[40]

Conclusion

The results reported here are noteworthy for several reasons. These clusters provide the first examples of polyoxometalates incorporating {Mn(CO)₃}⁺ and {Re(CO)₃}⁺ units. In addition, they provide a family of organometallic complexes whose structures led to the recognition of topological equivalent organometallic and oxo(alkoxo)metal units. Clusters **1** represent the first observation of discrete mono-cubane-type polyoxometalate derivatives, the alternative to the rhombic structure for compact complexes based on four edge-sharing octahedra. The latter might not be as favoured as often assumed, at least when the derivatization of the parent {M₄O₁₆}^{8–} core prevents violation of the Lipscomb rule. The structural versatility within the field of polyoxometalate derivatives incorporating d⁶-{ML₃} units is further illustrated by the cluster [Mo₄O₁₆{Ru(*p*-cymene)}₄] obtained from [{(*p*-cymene)RuCl₂₂] and sodium molybdate in aqueous solution.^[32b]

The reactivity of these novel clusters is currently under investigation. This work will be extended to assess the generality of the synthetic approach described here and to extend the concept of topological equivalent units.

Experimental Section

Materials: $(nBu_4N)_2[Mo_2O_7]$,^[41] [MnBr(CO)₅],^[42a] and [ReBr(CO)₅],^[42b] were prepared as described in the literature. [Re(CO)₃(MeCN)₃][BF₄] was prepared according the the procedure reported for the perchlorate salt,^[42c] using AgBF₄ instead of NaClO₄. 1,1,1-Tris(hydroxymethyl)ethane, pentaerythrytol, and tetrabutylammonium hydroxyde in methanol were obtained from commercial sources and used as received. Extra dry methanol was obtained by the standard method.^[43]

Methods: IR spectra were recorded from KBr pellets on a Bio-Rad FT 165 spectrometer. The ¹H and ¹³C NMR spectra were obtained on a Bruker AC 300 spectrometer. Electronic absorption spectra were recorded with a Shimadzu UV-2101PC spectrometer. Elemental analyses were performed either by the Analytical Service of University Pierre and Marie Curie or by that of the CNRS (Vernaison, France).

Preparations of (nBu₄N)[Mo₂O₅(OMe)₅{Mn(CO)₃]₂] (1a) and [Mo₂O₄- $(OMe)_{6}[Mn(CO)_{3}]_{2}]$ (2): A mixture of $(nBu_{4}N)_{2}[Mo_{2}O_{7}]$ (0.4 g, 0.5 mmol) and [MnBr(CO)₅] (0.27 g, 1 mmol) in MeOH (5 mL) was refluxed under N₂ for 3 h. The resulting dark green solution was allowed to stand at -30° C for one week. The green crystalline precipitate proved to be a mixture of large green cubic crystals of 1a (major product) and a few small red octahedral crystals of 2 (minor product) which were separated mechanically. **1a:** Yield 0.25 g (53%); IR (KBr): $\tilde{v} = 2037$ (s), 2025 (s), 1925 (br), 1910 (br) (v(CO)), 1060 (sh), 1045 (m), 1018 (m) (v(O-CH₃)), 940 (s), 920 (s), 900 cm⁻¹ (s) (v(Mo=O_t)); ¹H NMR (300.13 MHz, CD₃COCD₃, 22 °C, TMS): $\delta = 4.38$ (s, 6H; OCH₃), 4.40 (s, 3H; OCH₃) 4.54 (s, 6H; OCH₃); ¹³C NMR (75.47 MHz, CD₃COCD₃, 22 °C, TMS): $\delta = 64.2$ (s, 2C; OCH₃), 68.6 (s, 1C; OCH₃), 69.7 (s, 2C; OCH₃), 220.3 (s, 2C; CO), 221.5 (s, 2C; CO), 223.1 (s, 1C; CO), 223.9 (s, 1C; CO); UV/Vis (MeOH): λ_{max} (ϵ) = 390 nm (2330); C₂₇H₅₁Mn₂Mo₂NO₁₆ (947.5): calcd C 34.23, H 5.43, Mn 11.60, Mo 20.25, N 1.48; found: C 34.19, H 5.38, Mn 11.36, Mo 20.45, N 1.52. 2: IR (KBr): $\tilde{v} = 2042$ (s), 1940 (sh), 1925 (br) (v(CO)), 1017 (s), 977 (s) (v(O-CH₃)), 942 (s), 920 cm⁻¹ (s) (v(Mo=O_t)).

Preparation of (*n*Bu₄**N**)[Mo₂O₅(OMe)₅[Re(CO)₃]₂] (1b): (*n*Bu₄N)₂-[Mo₂O₇] (0.4 g, 0.5 mmol) and [Re(CO)₃(MeCN)₃][BF₄] (0.24 g, 0.5 mmol) were dissolved in MeOH (10 mL) and the solution was refluxed under N₂ for 18 h. The resulting light yellow solution was evaporated to dryness under a N₂ flux at room temperature, the crude product was redissolved in MeOH (2 mL) and the solution was allowed to stand at -30° C. The light yellow microcrystalline precipitate of 1b was filtered off after three days. Yield 0.05 mg (8%); IR (KBr): $\tilde{\nu} = 2032$ (s), 2020 (s), 1890 (br) (v(CO)), 1045 (s), 1000 (s) (v(O-CH₃)), 940 (s), 920 (s), 900 cm⁻¹ (s) (v(Mo=O₁)); C₂₇H₅₁Mo₂NO₁₆Re₂ (1210): calcd: C 26.80, H 4.25, Mo 15.86, N 1.16; found: C 27.36, H 4.29, Mo 16.03, N 1.31. A few crystals of 1b suitable for a crystal structure determination were obtained as follows: a mixture of

FULL PAPER

 $[{\rm ReBr}({\rm CO})_5]~(0.2~{\rm g},~0.5~{\rm mmol})$ and ${\rm AgNO_3}~(0.085~{\rm g},~0.5~{\rm mmol})$ in MeOH (10 mL) was stirred for 2 h. After filtration, $(n{\rm Bu_4N})_2[{\rm Mo_2O_7}]~(0.2~{\rm g},~0.25~{\rm mmol})$ was added to the filtrate and the reaction mixture was refluxed for 24 h. After filtration, the filtrate was cooled to $-30\,^\circ{\rm C}$ whereupon a few pale yellow crystals of 1b deposited overnight.

Preparation of $(nBu_4N)_2[Mo_2O_6(OMe)_4(Re(CO)_3]_2]$ (4): $(nBu_4N)_2[Mo_2O_7]$ (0.24 g, 0.31 mmol) and [Re(CO)_3(MeCN)_3][BF₄] (0.296 g, 0.62 mmol) were dissolved in MeOH (10 mL). One equivalent of $(nBu_4N)OH$ (0.62 mL of a 1m solution in MeOH) per equivalent Re was added and the mixture was stirred under N₂ for 18 h at room temperature. The light yellow solution was then evaporated to dryness under a N₂ flux. The crude solid was redissolved in MeOH (3 mL) and the solution was allowed to stand at 20 °C. Crystallization was apparent after a few hours and large pale yellow crystals of **4** were collected after a week. Yield 0.22 g (50%); IR (KBr) $\vec{v} = 1995$ (s), 1860 (br) (v(CO)), 1045 (sh), 1022 (m) (v(O-CH₃)), 917 (s), 892 (s) (v(Mo=O₁)), 780 cm⁻¹ (s) v(MoOMo)); 'H NMR (300.13 MHz, CD₃COCD₃, 22 °C, TMS): $\delta = 4.30$ (s; OCH₃); C₄2H₈₄Mo₂N₂O₁₆Re₂ (1437.4): calcd: C 35.1, H 5.89, N 1.95; found: C 36.27, H 6.29, N 2.21.

Preparations of $(nBu_4N)[Mo_2O_4[MeC(CH_2O)_3]_2[Mn(CO)_3]]$ (5) and $[Mo_2O_4 \{RC(CH_2O)_3\}_2 \{Mn(CO)_3\}_2] \quad (R = Me, \ 6\,a; \ R = CH_2OH, \ 6\,b): \ A$ solution of (nBu₄N)₂[Mo₂O₇] (0.79 g, 1 mmol), [MnBr(CO)₅] (0.27 g, 1 mmol), and $MeC(CH_2OH)_3$ (0.12 g, 1 mmol) was heated in MeOH (15 mL) for 6 h. A yellow solid (6a) began to deposit after 15 min. After separation of 6a (0.095 g), the filtrate was concentrated and layered with diethyl ether. Dark yellow crystals of compound 5 (0.1 g) were obtained within two days. Doubling the amounts of $MeC(CH_2OH)_3$ and of [MnBr(CO)₅] led to the precipitation of **6a** in 70% yield. Compound **6b** was similarly obtained in 55% yield from pentaerythritol. Its recrystallization from THF gave yellow-orange crystals of $6b \cdot 2$ THF. 5: IR (KBr): $\tilde{\nu} =$ 2031 (s), 1928 (s), 1905 (s) cm⁻¹ (v(CO)), 1122 (m), 1046 (s), 1002 (w) cm⁻¹ $(\nu(O-CH_3))$, 925 (s), 902 (s) cm⁻¹ ($\nu(Mo=O)$); ¹H NMR (300.13 MHz, CD₃COCD₃, 22 °C, TMS): δ = 4.69 (s, 2H; OCH₂), 4.62 (s, 2H; OCH₂), 4.55 $(d, {}^{2}J(H,H) = 9 Hz, 2H; OCH_{2}), 4.26 (d, {}^{2}J(H,H) = 9 Hz, 2H; OCH_{2}), 4.16$ $(d, {}^{2}J(H,H) = 9 Hz, 2H; OCH_{2}), 4.10 (d, {}^{2}J(H,H) = 9 Hz, 2H; OCH_{2}), 0.72$ (s, 3H; CH₃), 0.47 (s, 3H; CH₃); ¹³C NMR (75.47 MHz, CD₃COCD₃, 22°C, TMS) $\delta = 222$ (s, 3C; CO), 88.2 (s, 2C; OCH₂), 87.4 (s, 2C; OCH₂), 83.3 (s, 1C; OCH₂), 81.1, (s, 1C; OCH₂); 41.9 (s, 1C; C(CHO)₃), 36.5 (s, 1C; $C(CH_2O)_3$, 16.9 (s, 1C; CH₃), 16.5 (s, 1C; CH₃); UV/Vis (MeOH) λ_{max} (ϵ) 390 nm (1310). C₂₉H₅₄MnMo₂NO₁₃ (871.6): calcd C 39.97, H 6.25, N 1.61; found: C 39.95, H 6.35, N 1.55; **6a**: IR (KBr): $\tilde{\nu} = 2047$, 1943 (br) cm⁻¹ (v(CO)). C₁₆H₁₈Mn₂Mo₂O₁₆ (768.1): calcd: C 25.02, H 2.36; found: C 24.93, H 2.39; **6b**: IR (KBr): $\tilde{\nu} = 2048$ (s), 1954 (s), 1931 (s) cm⁻¹ (ν (CO)); UV/Vis (THF) λ_{max} (ε) = 393 nm (2680). ¹H NMR (300.13 MHz, CD₃COCD₃, 22 °C, TMS) $\delta = 5.27$ (s, 4H; OCH₂), 4.94 (d, 4H; OCH₂) 4.89 (d, 4H; $OCH_2), 3.68 \ (s, 4\,H; CH_2OH); C_{16}H_{18}Mn_2Mo_2O_{18} \ (800.1): calcd: C\ 24.02, H$ 2.27; found: C 24.52, H 2.39.

Preparation of (*n*Bu₄N)₂[Mo₆O₁₆(OMe)₂{MeC(CH₂O)₃]₂{Mn(CO)₃]₂] (7): (nBu₄N)₂[Mo₂O₇] (0.79 g, 1 mmol) and MeC(CH₂OH)₃ (0.24 g, 2 mmol) and [MnBr(CO)₅] (0.54 g, 2 mmol) were stirred in MeOH (15 mL) at room temperature until all solids were dissolved (about two hours). The mixture turned red while CO evolved. The clear red solution was cooled in an ice bath and then was allowed to warm slowly to room temperature. Orange needles of compound 7 deposited upon standing within one day. Yield 0.38 g (60 % yield, based on Mo); IR (KBr): $\tilde{\nu} = 2034$ (s), 1930 (br), 1925 (sh) cm⁻¹ (v(CO)); UV/Vis (MeOH): λ_{max} (ϵ) = 395 nm (2790); ¹H NMR (300.13 MHz, CD₃CN, 22 °C, TMS) $\delta = 4.66$ (dd, ²*J*(H,H) = 10.5 Hz, ${}^{4}J(H,H) = 2.4 \text{ Hz}, 2 \text{ H}; \text{ OCH}_{2}, 4.57 \text{ (dd, } {}^{2}J(H,H) = 10.6 \text{ Hz}, {}^{4}J(H,H) =$ 1.4 Hz, 2H; OCH₂), 4.44 (dd, ${}^{2}J(H,H) = 11.7$ Hz, ${}^{4}J(H,H) = 1.5$ Hz, 2H; OCH_2 , 4.41 (dd, ${}^{2}J(H,H) = 10.6 Hz$, ${}^{4}J(H,H) = 1.9 Hz$, 2H; OCH_2), 4.39 (s, 6H, OCH₃), 4.38 (dd, ${}^{2}J(H,H) = 10.5$ Hz, ${}^{4}J(H,H) = 2.0$ Hz, 2H; OCH₂), 4.10 (dd, ${}^{2}J(H,H) = 11.9$ Hz, ${}^{4}J(H,H) = 2.4$ Hz, 2H; OCH₂), 0.51 (s, 6H; CH₃); ¹³C NMR (75.47 MHz, CD₃CN, 22 °C, TMS): $\delta = 222.3$ (s, 4C; CO), 207.4 (s, 2C; CO), 89.4 (s, 2C; OCH2), 84.7 (s, 2C; OCH2), 80.2 (s, 2C; OCH₂), 40.8 (s, 2C; C(CH₂O)₃), 16.8 (s, 2C; CH₃); C₅₀H₉₆Mn₂Mo₆N₂O₃₀ (1890.8): calcd: C 31.76, H 5.12, N 1.48; found: C 31.37, H 5.11, N 1.49.

Crystal structure analyses: Crystal structure data are summarized in Table 1. Data were recorded at room temperature on an Enraf–Nonius CAD4 diffractometer using graphite-monochromated $Mo_{K\alpha}$ radiation ($\lambda = 0.71069$ Å). Crystals were mounted on glass fibers and sealed with an epoxy cement except for **6b** · 2THF which was put in a Lindemann glass tube. Lattice parameters and the orientation matrix were obtained from a least-

squares fit of 25 atomatically centered reflections in the range $15-15.2^{\circ}$ for 1a, $12-12.5^{\circ}$ for 1b, $13-13.4^{\circ}$ for 2, $14-14.5^{\circ}$ for 4 and $6b \cdot 2$ THF, 14-14.3° for 5 and 7. References were periodically monitored for intensity and orientation control. No decay was observed except for the crystal of 7 which had decayed by about 23%. Intensities were corrected for Lorentz and polarization effects and for absorption (empirical). Only those with $I \ge$ $3\sigma(I)$ were retained for calculations. Data processing was performed using the program CRYSTALS.^[44a] The structures were solved by direct methods^[44b] and subsequent electron density maps. All atoms were refined anisotropically. Hydrogen atoms were not included in the refinements. The asymmetric unit of **4** contains the 'MoO₃(OMe)₂{Re(CO)₃}-' half-anion and one nBu₄N⁺ ion. The asymmetric unit of **6b** contains the 'MoO₂-{HOCH₂C(CH₂O)₃}{Mn(CO)₃}' half-cluster and one THF molecule. The pendant OH group of the cluster and the molecule of THF were found to be disordered. The asymmetric unit of 7 contains the $\label{eq:mosterior} {}^{\circ}Mo_{3}O_{8}(OMe)\{MeC(CH_{2}O)_{3}\}\{Mn(CO)_{3}\}^{-}{}^{\prime}\ half-anion\ and\ one\ nBu_{4}N^{+}$ ion. Neutral-atom scattering factors were used, with anomalous dispersion correction applied. Final residuals are given in Table 2.[45] Despite rather large standard deviations due to the poor quality of crystals, the composition and the molecular structure of the cluster anion in 5 are unequivocal. Molecular structures were drawn with the program CAMER-ON [44c]

Acknowledgement

The authors thank Dr. R. Thouvenot for assistance in NMR studies.

- a) R. K. C. Ho, W. G. Klemperer, J. Am. Chem. Soc. 1978, 100, 6772;
 b) V. W. Day, W. G. Klemperer, Science 1985, 228, 533. c) For a review of the extensive studies of Klemperer and co-workers on polyoxoan-ion-supported organometallic complexes, see: V. W. Day, W. G. Klemperer in Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Eds.: M. T. Pope, A. Müller), Kluwer, Dordrecht, 1994, pp. 87–104.
- [3] a) W. H. Knoth, J. Am. Chem. Soc. 1979, 101, 759; b) W. H. Knoth, J. Am. Chem. Soc. 1979, 101, 2211; c) P. J. Domaille, W. H. Knoth, Inorg. Chem. 1983, 22, 818.
- [4] a) R. G. Finke, B. Rapko, P. J. Domaille, *Organometallics* 1986, 5, 175.
 b) For references for the extensive studies of Finke and co-workers on the synthesis and characterization of [PW₉M₃O₃₇]⁷-based and [P₂W₁₅M₃O₆₂]⁹-based (M = V⁵⁺, Nb⁵⁺) polyoxoanion-supported organometallic complexes, see: H. Weiner, J. D. Aiken III, R. G. Finke, *Inorg. Chem.* 1996, *35*, 7903; c) Y. Hayashi, F. Müller, Y. Lin, S. S. Miller, O. P. Anderson, R. G. Finke, *J. Am. Chem. Soc.* 1997, *119*, 11401.
- [5] a) Y. Hayashi, Y. Ozawa, K. Isobe, *Inorg. Chem.* 1991, 30, 1025; b) Y. Hayashi, K. Toriumi, K. Isobe, *J. Am. Chem. Soc.* 1988, *110*, 3666; c) Y. Do, X.-Z. You, C. Zhang, Y. Ozawa, K. Isobe, *J. Am. Chem. Soc.* 1991, *113*, 5892; d) K. Isobe, A. Yagasaki, *Acc. Chem. Res.* 1993, *26*, 524; d) R. Xi, B. Wang, K. Isobe, T. Nishioka, K. Toriumi, Y. Ozawa, *Inorg. Chem.* 1994, *33*, 833; d) S. Takara, T. Nishioka, I. Kinoshita, K. Isobe, *Chem. Commun.* 1997, 891.
- [6] a) A. R. Siedle, C. G. Markell, P. A. Lyon, K. O. Hodgson, A. L. Roe, *Inorg. Chem.* **1987**, *26*, 219; b) A. R. Siedle, R. A. Newmark, W. B. Gleason, R. P. Skarjune, K. O. Hodgson, A. L. Roe, V. W. Day, *Solid State Ionics* **1988**, *26*, 109; c) A. R. Siedle, R. A. Newmark, K. A. Brown-Wensley, R. P. Skarjune, L. C. Haddad, K. A. Hodgson, A. L. Roe, *Organometallics* **1988**, *7*, 2078; d) A. R. Siedle, R. A. Newmark, *Organometallics* **1989**, *8*, 1442; e) A. R. Siedle, R. A. Newmark, *J. Am. Chem. Soc.* **1989**, **111**, 2058; f) A. R. Siedle, R. A. Newmark, M. R. V. Sahyun, P. A. Lyon, S. L. Hunt, R. P. Skarjune, *J. Am. Chem. Soc.* **1989**, *111*, 8346; g) A. R. Siedle, *New J. Chem.* **1989**, *13*, 719.
- [7] M. N. Vargaftik, Y. T. Struchkov, A. I. Yanovsky, P. M. Maitlis, J. Chem. Soc. Chem. Commun. 1993, 247.
- [8] a) D. K. Lyon, R. G. Finke, *Inorg. Chem.* 1990, 29, 1787; b) N. Mizuno, D. K. Lyon, R. G. Finke, *J. Catal.* 1991, *128*, 84; c) R. G. Finke, in *Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity* (Eds.: M. T. Pope, A. Müller), Kluwer, Dordrecht, 1994, pp. 267–280;

^[1] P. Gouzerh, A. Proust, Chem. Rev. 1998, 98, 77.

^{1190 —}

Table 2. C	Crystal	structure	data fo	r com	pounds	1a,	1b,	2, 4	1, 5,	6b,	and	7.
------------	---------	-----------	---------	-------	--------	-----	-----	------	-------	-----	-----	----

formula $C_{27}H$ M_r [gmol ⁻¹]947.4coloryellocrystal systemtricli	$H_{51}Mn_2Mo_2N_1O_{16}$ 43 bw inic	$C_{27}H_{51}Mo_2N_1O_{16}Re_2$ 1210.00 white	$C_{12}H_{18}Mn_2Mo_2O_{16}$ 720.02	$C_{42}H_{84}Mo_2N_2O_{16}Re_2$	$C_{29}H_{54}Mn_1Mo_2N_1O_{13}$	Ca, Ha, MnaMoaOaa	C H M ₂ M ₂ N O
$M_{\rm r} [{\rm gmol}^{-1}]$ 947.4 color yello crystal system tricli	43 and the second secon	1210.00 white	720.02			024113411121110202020	$C_{50} \Pi_{96} I V \Pi_2 I V I O_6 I N_2 O_{30}$
color yello crystal system tricli	ow vinic t	white		1437.44	871.57	944.28	1890.83
crystal system tricli	inic t		red	white	yellow	yellow	orange
		triclinic	orthorhombic	triclinic	orthorhombic	monoclinic	monoclinic
space group $P\bar{1}$	i	PĪ	P cab	PĪ	$P2_1cn$	C2/c	$P2_{1}/n$
T [K] ambi	ient a	ambient	ambient	ambient	ambient	ambient	ambient
a [Å] 11.77	70(3)	11.755(2)	11.505(7)	11.055(3)	12.720(4)	26.88464)	12.391(3)
<i>b</i> [Å] 12.91	11(3)	13.141(2)	12.598(7)	11.224(3)	14.708(4)	11.258(3)	22.163(4)
c [Å] 13.85	54(4)	13.496(2)	16.212(4)	12.223(3)	20.084(2)	12.312(4)	15.862(3)
α [°] 90.18	8(3)	92.59(1)	90	67.58(2)	90	90	90
β [°] 107.4	43(3)	93.90(1)	90	85.06(2)	90	115.68(3)	112.43(2)
γ [°] 95.69	9(2)	94.16(1)	90	80.77(2)	90	90	90
V [Å ³] 1997	7(1)	2071.9(4)	2350(2)	1384.4(5)	3757(2)	3359(2)	4026(2)
Z 2		2	4	1	4	4	2
$\rho_{\rm calcd} [{ m g}{ m cm}^{-3}] $ 1.575	5	1.94	2.035	1.725	1.541	1.85	1.559
μ [cm ⁻¹] 12.53	3 (65.41	20.96	49.123	10.1	14.97	12.407
$2\theta_{\max}$ [°] 50	4	50	50	50	50	50	50
refl. measured 7318	3	7642	2372	5135	3452	6560	7642
unique refl. (R_{int}) 6996	5 (0.013)	7254 (0.017)	-	4858 (0.024)	-	2965 (0.02)	7075 (0.04)
observed $(I > 3\sigma(I))$ 5735	5 4	4670	1405	3732	2281	1426	3775
refined parameters 435	2	434	146	290	331	203	407
R ^[a] 0.036	6 (0.061	0.037	0.048	0.060	0.052	0.054
$Rw^{[b]}$ 0.039	9 (0.071	0.041	0.052	0.065	0.059	0.063
$\Delta \rho$ (max/min) [e Å ⁻³] 0.52/	/-0.56	2.34/-3.0	0.5/-0.29	1.29/-0.85	2.98/-2	0.84 / - 0.54	1.01/-0.73

 $[a] R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|. [b] R_w = [\Sigma w(|F_o| - |F_c|)^2 / \Sigma w F_o^2]^{1/2} (w = 1 \text{ except for compounds } \mathbf{6b} \cdot 2 \text{ THF and } \mathbf{7}: w = w' [1 - ((|F_o| - |F_c|)/(6\sigma(F_o))^2]^2 \text{ with } w' = 1/\Sigma_r A_r T_r(X) \text{ for which } X \text{ is } F_o/F_c \text{ (max) with three coefficients for a Chebyshev Series: 12.4, 5.6, and 10.8 for <math>\mathbf{6b} \cdot 2 \text{ THF and } 7.07, -1.39 \text{ and } 5.33 \text{ for } \mathbf{7}).$

d) N. Mizuno, H. Weiner, R. G. Finke, J. Mol. Catal. A: Chemical 1996, 114, 15.

- [9] a) K. Takahashi, M. Yamaguchi, T. Shido, H. Ohtani, K. Isobe, J. Chem. Soc. Chem. Commun. 1995, 1301; b) Y. Imada, T. Shido, R. Ohnishi, K. Isobe, M. Ichikawa, Catal. Lett. 1996, 38, 101.
- [10] a) F. Bottomley, L. Sutin, Adv. Organomet. Chem. 1988, 28, 339;
 b) F.Bottomley, Polyhedron, 1992, 11, 1707.
- [11] a) P. Gouzerh, Y. Jeannin, A. Proust, F. Robert, Angew. Chem. 1989, 101, 1377; Angew. Chem. Int. Ed. Engl. 1989, 28, 1363; b) A. Proust, P. Gouzerh, F. Robert, Inorg. Chem. 1993, 32, 5291.
- [12] A. Proust, P. Gouzerh, F. Robert, Angew. Chem. 1993, 105, 81; Angew. Chem. Int. Ed. Engl. 1993, 32, 115.
- [13] R. Villanneau, *Doctoral Dissertation*, Université Pierre et Marie Curie, **1997**.
- [14] a) L. Ma, S. Liu, J. Zubieta, *Inorg. Chem.* **1989**, 28, 175; b) S. Liu, L. Ma, D. McGowty, J. Zubieta, *Polyhedron* **1990**, *13*, 1541.
- [15] A. Müller, J. Meyer, H. Bögge, A. Stammler, A. Botar, *Chem. Eur. J.* 1998, 4, 1388.
- [16] a) J. R. Harper, A. L. Rheingold, J. Am. Chem. Soc. 1990, 112, 4037;
 b) F. Bottomley, J. Chen, Organometallics 1992, 11, 1707.
- [17] A. Proust, R. Thouvenot, P. Herson, J. Chem. Soc. Dalton Trans. 1999, 51.
- [18] a) M. D. Clerk, M. J. Zaworotko, J. Chem. Soc. Chem. Commun. 1991, 1607; b) M. Herberhold, G. Süß, J. Ellerman, H. Gäbelein, Chem. Ber 1978, 111, 2931.
- [19] H. Kang, S. Liu, S. N. Shaikh, T. Nicholson, J. Zubieta, *Inorg. Chem.* 1989, 28, 920.
- [20] a) Q. Chen, J. Zubieta, *Coord. Chem. Rev.* 1992, 114, 107; b) J. Zubieta in *Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity* (Eds.: M. T. Pope, A. Müller), Kluwer, Dordrecht, 1994, pp. 129–156; c) M. I. Khan, J. Zubieta, *Progr. Inorg. Chem.* 1995, 43, 1.
- [21] A. J. Wilson, W. T. Robinson, C. J. Wilkins, Acta Crystallogr. Sect. C. 1983, 39, 54.
- [22] D. Crans, R. W. Marshman, M. S. Gottlieb, O. P. Anderson, M. M. Miller, *Inorg. Chem.* **1992**, *31*, 4939.
- [23] Y. Chang, Q. Chen, M. I. Khan, J. Zubieta, J. Chem. Soc. Chem. Commun. 1993, 1872.
- [24] R. Delmont, A. Proust, F. Robert, P. Herson, P. Gouzerh, submitted C. R. Acad. Sci. Paris, Ser. IIc, in press.
- [25] L. Ma, S. Liu, J. Zubieta, J. Chem. Soc. Chem. Commun. 1989, 440.

- [26] W. N. Lipscomb, Inorg. Chem. 1965, 4, 132.
- [27] a) E. W. Corcoran, J. Am. Chem. Soc. 1990, 29, 157; b) R. C. Haushalter, J. Chem. Soc. Chem. Commun. 1987, 1566; c) K.-H. Lii, R. C. Haushalter, C. J. O'Connor, Angew. Chem. 1987, 99, 574; Angew. Chem. Int. Ed. Engl. 1987, 26, 549; d) L. A. Mundi, R. C. Haushalter, J. Am. Chem. Soc. 1991, 113, 6340.
- [28] A. Hüllen, Angew. Chem. 1964, 76, 588; A. Hüllen, Ber. Bunsen-Ges. Phys. Chem. 1966, 70, 598.
- [29] E. M. McCarron, III, R. L. Harlow, I, J. Am. Chem. Soc. 1983, 105, 6179.
- [30] S. Takara, S. Ogo, Y. Watanabe, K. Nishikawa, I. Kinoshita, K. Isobe, Angew. Chem. 1999, 111, 3233; Angew. Chem. Int. Ed. 1999, 38, 3051.
- [31] V. W. Day, M. F. Fredrich, M. R. Thompson, W. G. Klemperer, R.-S. Liu, W. Shum, J. Am. Chem. Soc. 1981, 103, 3597.
- [32] a) L. Plasseraud, H. Stoechli-Evans, G. Süss-Fink, *Inorg. Chem. Commun.* 1999, 2, 44; b) G. Süss-Fink, L. Plasseraud, V. Ferrand, H. Stoeckli-Evans, *Chem. Commun.* 1997, 1657; G. Süss-Fink, L. Plasseraud, V. Ferrand, S. Stanislas, A. Neels, H. Stoeckli-Evans, M. Henry, G. Laurenczy, R. Roulet *Polyhedron*, 1998, *17* 2817.
- [33] T. Szyperski, P. Schwerdtfeger, Angew. Chem. 1989, 101, 1271; Angew. Chem. Int. Ed. Engl. 1989, 28, 1228.
- [34] H. R. Allcock, E. C. Bissell, E. T. Shawl, Inorg. Chem. 1973, 12, 2963.
- [35] A. Proust, R. Thouvenot, F. Robert, P. Gouzerh, *Inorg. Chem.* 1993, 32, 5299.
- [36] a) B. Krebs, I. Paulat-Boschen, Acta Crystallogr. Sect. B, 1982, 38, 1710; b) B. Krebs, S. Stiller, K. H. Tytko, J. Mehmke, Eur. J. Solid State Inorg. Chem. 1991, 28, 883.
- [37] a) A. Müller, E. Krickemeyer, S. Dillinger, H. Bögge, A. Proust, W. Plass, R. Rohlfing, *Naturwissenschaften* **1993**, *80*, 560; b) A. Müller, E. Krickemeyer, S. Dillinger, H. Bögge, W. Plass, A. Proust, L. Dloczik, C. Menke, J. Meyer, Z. Anorg. Allg. Chem. **1994**, *620*, 599.
- [38] A. Müller, J. Meyer, E. Krickemeyer, E. Diemann, Angew. Chem. 1996, 108, 1296; Angew. Chem. Int. Ed. Engl. 1996, 35, 1206.
- [39] A. Müller, E. Krickemeyer, J. Meyer, H. Bögge, F. Peters, W. Plass, E. Diemann, S. Dillinger, F. Nonnenbruch, M. Randerath, C. Menke, *Angew. Chem.* 1995, 107, 2293; *Angew. Chem. Int. Ed. Engl.* 1995, 34, 2122.
- [40] a) A. Proust, F. Robert, P. Gouzerh, Q. Chen, J. Zubieta, J. Am. Chem. Soc. 1997, 119, 3523; b) W. A. Nugent, J. M. Mayer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988.

Chem. Eur. J. 2000, 6, No. 7 © WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000

0 0947-6539/00/0607-1191 \$ 17.50+.50/0

- 1191

FULL PAPER

- [41] N. H. Hur, W. G. Klemperer, R.-C. Wang, Inorg. Synth. 1990, 27, 79.
- [42] a) E. W. Abel, G. Wilkinson, J. Chem. Soc. 1959, 1501; b) S. P.
 Schmidt, W. C. Trogler, F. Basolo, Inorg. Synth. 1990, 28, 162;
 c) D. A. Edwards, J. Marshalsea, J. Organomet. Chem. 1977, 131, 73.
- [43] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, 5th ed., Longman, Singapore, 1988.
- [44] a) D. J. Watkin, J. R. Carruthers, P. W. Betteridge, CRYSTALS, Chemical Crystallography Laboratory, University of Oxford, Oxford, 1996; b) G. M. Sheldrick, SHELXS:86 Program for the Solution of Crystal Structures, University of Göttingen, 1986; c) L. J. Pearce, D. J.

Watkin, CAMERON, Chemical Crystallography Laboratory, University of Oxford, Oxford, 1996.

[45] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-101142 (1a, 4, 5 and 7), CCDC-138191 (1b), CCDC-138190 (2), and CCDC-138189 (6a). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam. ac.uk).

Received: December 27, 1999 [F2207]